力学最早起源于对自然现象的观察和在生产劳动中的经验。人们从建筑、灌溉等劳动中使用杠杆、斜面、汲水等工具,逐渐积累起对平衡物体受力情况的认识。对杠杆平衡、物体重心位置、物体在水中受到的浮力等研究,确定它们的基本规律,奠定了平衡理论即静力学的基础。古人从对日、月运行的观察,以及弓箭、车轮等的使用中,了解了运动规律,如匀速的移动和转动。对力和运动之间关系的认识。在实验研究和理论分析的基础上,伽利略最早阐明自由落体运动的规律,提出加速度的概念。牛顿提出物体运动三定律。伽利略和牛顿奠定了动力学的基础。牛顿运动定律的建立标志着力学开始成为一门科学。
力学可粗分为静力学、运动学和动力学三部分,静力学研究力的平衡或物体的静止问题;运动学只考虑物体怎样运动,不讨论它与所受力的关系;动力学讨论物体运动和所受力的关系。
力学不仅是一门基础科学,同时也是一门技术科学,它是许多工程技术的理论基础,又在广泛的应用过程中不断得到发展。工程学越分越细,各个分支中许多关键性的进展,都有赖于力学中有关运动规律、强度、刚度等问题的解决。
力学和工程学的结合,促使了工程力学各个分支的形成和发展。现在,无论是、、水利工程、机械工程、船舶工程等,还是航空工程、航天工程、核技术工程、生物医学工程等,都或多或少有工程力学的活动场地。
牛顿提出物体运动三定律之后,力学的研究对象由单个的自由质点,转向受约束的质点和受约束的质点系。这方面的标志是达朗贝尔提出的达朗贝尔原理和拉格朗日建立的分析力学。其后,欧拉又进一步把牛顿运动定律用于刚体和理想流体的运动方程,这看作是连续介质力学的开端。
运动定律和物性定律这两者的结合,促使弹性固体力学基本理论和粘性流体力学基本理论孪生于世,在这方面作出贡献的是纳维、柯西、泊松、斯托克斯等人。弹性力学和流体力学基本方程的建立,使得力学逐渐脱离物理学而成为独立学科。
从牛顿到汉密尔顿的理论体系组成了物理学中的经典力学。在弹性和流体基本方程建立后,所给出的方程一时难于求解,工程技术中许多应用力学问题还须依靠经验或半经验的方法解决。这使得19世纪后半叶,在材料力学、结构力学同弹性力学之间,水力学和水动力学之间一直存在着风格上的显著差别。
20世纪初,随着新的数学理论和方法的出现,力学研究又蓬勃发展起来,创立了许多新的理论,同时也解决了工程技术中大量的关键性问题,如航空工程中的声障问题和航天工程中的热障问题等。
这时的先导者是普朗特和卡门,他们在力学研究工作中从复杂的现象中寻找事物本质,又寻找解决问题的数学途径,逐渐形成一套特有的方法。从20世纪60年代起,计算机的应用日益广泛,力学无论在应用上或理论上都有了新的进展。
力学与数学在发展中始终相互推动,相互促进。一种力学理论往往和相应的一个数学分支相伴产生,如运动基本定律和微积分,运动方程的求解和常微分方程,弹性力学及流体力学和数学分析理论,天体力学中运动稳定性和微分方程定性理论等,因此有人甚至认为力学应该也是一门应用数学。但是力学和其它物理学分支一样,还有需要实验基础的一面,而数学寻求的是比力学更带性的数学关系,两者有各自不同的研究对象。
同时,力学也可按所研究对象区分为固体力学、流体力学和一般力学三个分支,流体包括液体和气体;固体力学和流体力学可统称为连续介质力学,它们通常都采用连续介质的模型。固体力学和流体力学从力学分出后,余下的部分组成一般力学。
一般力学通常是指以质点、质点系、刚体、刚体系为研究对象的力学,有时还把抽象的动力学系统也作为研究对象。一般力学除了研究离散系统的基本力学规律外,还研究某些与现代工程技术有关的新兴学科的理论。